

SR推進管

曲線推進工法用推進管

曲線推進で、軸方向応力度を正しく検討している管です。

SR推進管の特長

推進耐力が大きくなります。

推進力伝達材の適切な検討選定により、水力伝達面積が拡大し、推進耐力が向上します。

標準管長で急曲線推進が可能です。

複数可とう部を設けることにより、急曲線の施工ができます。

目地の開きが少なくなります。

目地材は、従来管の約20~50%となります。

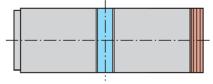
経済的です。

施工時に特別な器具や資材が要りません。

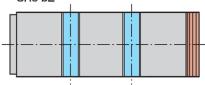
管軸方向応力度を検討しております。

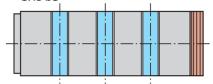
推進工法では、管軸方向応力度の安全を確認する事が最も重要です。

曲線推進では、管の軸方向応力度の検討が最も重要です。


SR推進管の外圧強さ及び圧縮強度は、JSWAS A-6やA-2規格と同じです。

SR推進管の種類


SRJ-a


SRJ-b1

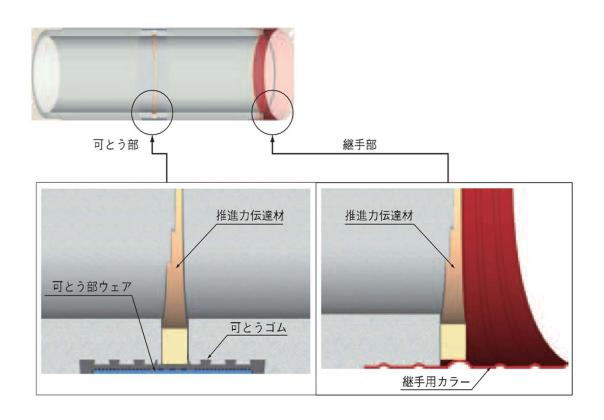
SRJ-b2

SRJ-b3

SRJ-b4

小口径SR推進管の種類

	外圧強さ	内圧強さ	圧縮強度	継手形状	可とう部 の数	可とう部数 の記号	呼び径の 範囲
外圧管	1種	-	50,70	SRSA形	0		250~
か圧官	2種	_	50	SRSB形	U	а	700

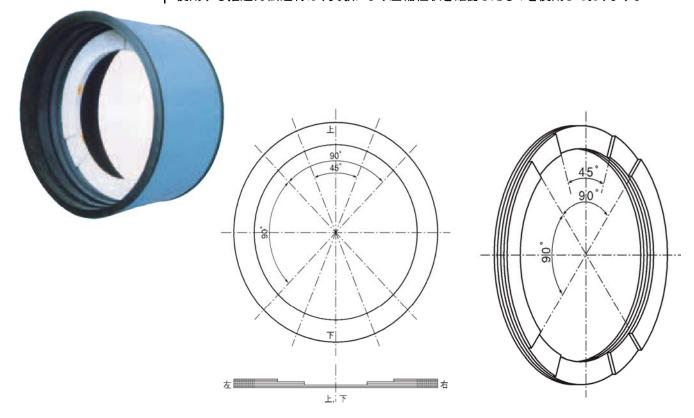

中大口径SR推進管の種類

	外圧強さ	内圧強さ	圧縮強度	継手形状	可とう部の数	可とう部数の記号	呼び径の 範囲	
	1種	1	50,70		0	a b1		
外圧管	2種	-	50	SRB形 SRC形	2		800 ~ 3000	
	3種	ı	50		3 4	b3 b4		
	1種	2P	50,70	SRB彩 SRC彩		0 1	a b1	
内圧管	2種	4P	50			2	b2 b3	800 ~ 3000
	3種	6P	50		4	b3 b4		

注)継手形状は、曲線半径や耐震上の抜出し量を考慮して選定します。

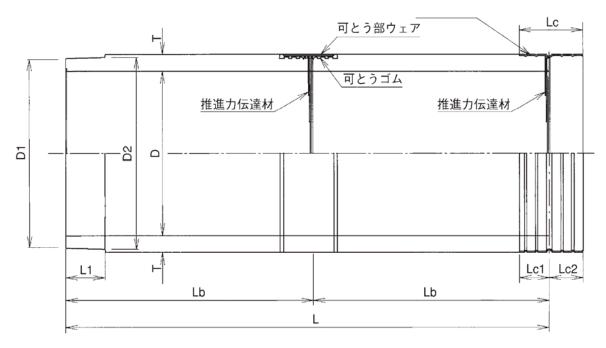
SR推進管の構造 可とう部及び継手部の構造

可とう部は、推進力を伝達する推進力伝達材、可とうゴム及びカラー(ウェア)で 構成されており、継手部は、受け口に推進力伝達材が埋め込まれています。



推進力伝達材の構造

推進力伝達材は左右が厚く、中央の位置となる上下の部分が薄くなっており、推力の大きさや曲げ角度(曲線半径)によって厚さを変えております。


推進力伝達材は推力による最大応力度が許容圧縮応力度以下となるよう、施工条件に応じてその都度検討し、材質や厚さを決定しております。

使用する推進力伝達材は、実験により圧縮性状を確認したものを使用しております。

中大口径SR推進管の形状寸法

中大口径SR推進管の形状寸法は、JSWAS A-2(JB. JC)規格と基本的には同じとなっております。

L1:202(142) Lc:320(270), Lc2:170(116)

注)()内は、SRB形の場合です。

中大口径SR推進管の形状図(b1平面図)

中大口径SR推進管の寸法

呼び径	内径				厚さ	有効長		分割長	と と と と と し と し と し と り し り し り り り り り		参考
()	D (1.1.1)	D1	D2	π D2	T	L	b1形	b2形	b3形	b4形	質量
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(kg)
800	800	930	938	2947	80						1340
900	900	1050	1058	3324	90						1680
1000	1000	1170	1178	3701	100						2070
1100	1100	1280	1288	4046	105						2390
1200	1200	1400	1408	4423	125						2850
1350	1350	1560	1568	4926	140						3470
1500	1500	1740	1748	5492	150						4320
1650	1650	1910	1918	6026	160	2430	1215	810	608	486	5080
1800	1800	2080	2088	6560	175						5910
2000	2000	2310	2318	7282	190						7160
2200	2200	2540	2548	8005	205						8540
2400	2400	2760	2768	8696	220						10100
2600	2600	2990	2998	9418	220						11700
2800	2800	3220	3228	10141	235						13400
3000	3000	3450	3458	10864	250						15300

注) a形の場合は、可とう部がありませんので、Lb寸法はありません。

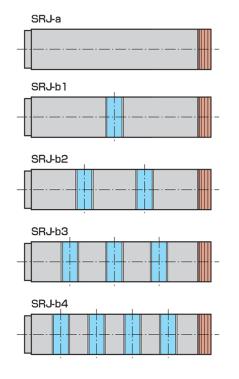
SR推進管の曲線半径

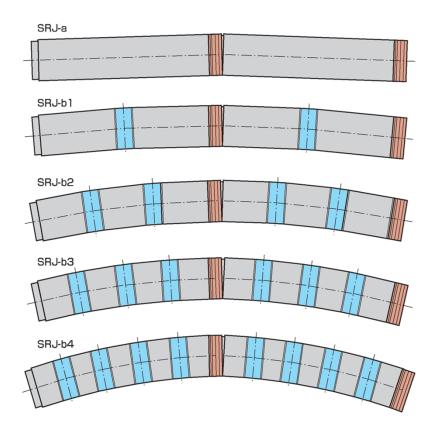
推進工法用管の施工可能な曲瀬半径は、継手などの曲げ性能と側圧の他に、管軸方向の応力から決まります。

標準管長で 急曲線推進が 可能です。 継手の曲げ性能から求めたSR推進管の最小曲線半径は表のようになります。

この場合の推進耐荷力は直線時の25~30%(推進力伝達材により変わります) 程度となります。

推力が大きい場合は、曲線半径を緩くして応力度の均等化を図る必要がありますので、曲線半径は下表の値より大きく(曲げ量は小さく)なります。

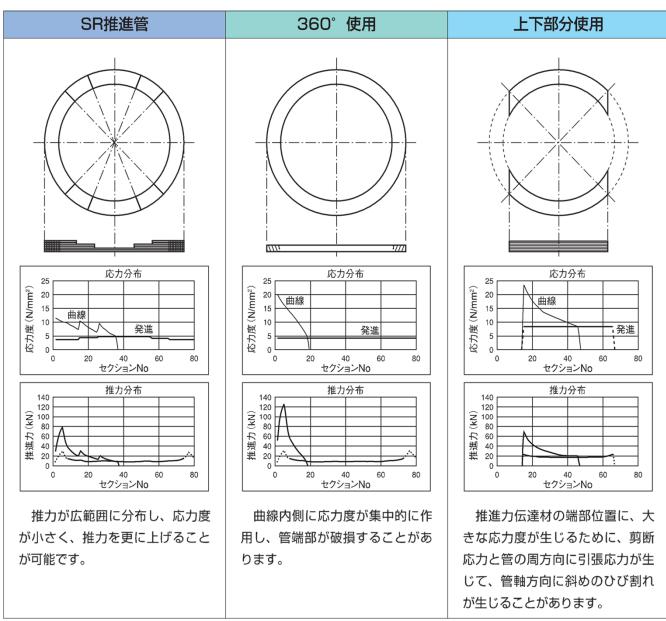

下表の最小曲線半径は目安であり、設計の際は個々に検討する必要があります。


最小曲線半径(SRC形)

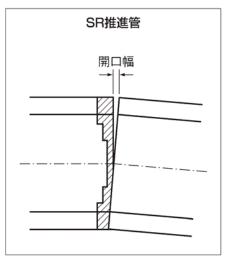
	管厚	外形	有効長	開口差	曲げ角度		#]線半径(n	n)	
呼び径				С			S	R管の種類	頁	
	mm	m	m	mm	(')	а	b1	b2	b3	b4
800	80	0.960	2.430	60	3.576	40	20	14	11	9
900	90	1.080	2.430	60	3.180	45	23	16	12	10
1000	100	1.200	2.430	60	2.862	50	25	17	13	11
1100	105	1.310	2.430	60	2.622	54	28	19	14	12
1200	125	1.430	2.430	60	2.403	59	30	21	16	13
1350	140	1.600	2.430	60	2.148	66	34	23	17	14
1500	150	1.780	2.430	60	1.931	73	37	25	19	16
1650	160	1.950	2.430	60	1.762	80	41	28	21	17
1800	175	2.120	2.430	60	1.621	87	44	30	23	19
2000	190	2.350	2.430	60	1.463	97	49	33	25	21
2200	205	2.580	2.430	60	1.332	106	54	37	28	23
2400	220	2.810	2.430	60	1.223	116	59	40	30	25
2600	220	3.040	2.430	60	1.131	125	64	43	33	27
2800	235	3.270	2.430	60	1.051	135	68	46	35	29
3000	250	3.500	2.430	60	0.982	144	73	49	38	31

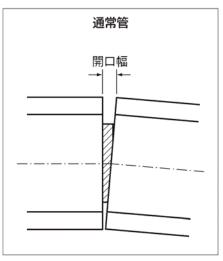
注」)曲線半径は、開口差から求めた値です。軸方向応力度の検討が必要となります。

曲線状況

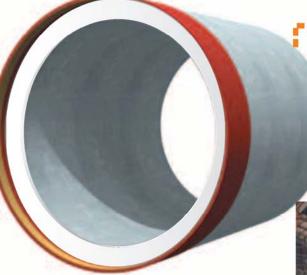


曲線推進応力度


図は、曲線推進時の各種推進力伝達材を、単曲線の同一条件で比較した例です。


発進時の直線と曲線時の応力分布と推力分布が示されています。推進力伝達材は先ず、発進時に圧縮変形し曲線で 更に変形するとして検討しています。

目地の開きが 少なくなります。


受け口部の推進力伝達材は、360°全周に配置され管体に埋め込まれているために、開口幅が狭くなり目地量が少なくなります。

内圧対応SR推進管

(公社)日本下水道協会認定適用資器材(II類)登録品

内圧対応SR推進管は、 雨水貯留管の整備に 最適な管材です。

種 類

	外圧強さ	内圧強さ	圧縮強度	継手形状	可とう部 の数	可とう部数 の記号	呼び径の 範囲
	1種	2P	50,70		0	а	
内圧管	2種	4P	50	SRC形	1 2 3	b1 b2 b3	800~ 3000
	3種	6P	50		4	b4	

内圧強さ

種類	試験水圧
2P	0.2
4P	0.4
6P	0.6

継手性能

継手形状	耐水圧	抜出量
SRC形	0.2MPa	60mm